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The dispersion relation for plane waves in uniaxial metamaterials with indefinite dielectric tensors and scalar
positive permeability is theoretically investigated. It is found, that the isofrequency surfaces of the plane
extraordinary waves have a hyperbolic shape which allows the propagation of waves with infinitely long wave
vectors. As an example a metallodielectric multilayer was considered and the dispersion relations were deter-
mined using an effective medium approximation and an analytically exact Bloch wave calculation. The ex-
traordinary waves in this structure are identified as multilayer plasmons and the validity of the effective
medium approximation is examined.
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INTRODUCTION

Metamaterials for electromagnetic waves are artificial ma-
terials which are composed of different elements whose size
is much smaller than the wavelength the metamaterial is de-
signed for. The structure on the subwavelength scale leads to
new properties for the effective dielectric constant and per-
meability of the whole metamaterial. In the past the research
for metamaterials was mainly concerned with structures
which provide a negative refractive index due to simulta-
neous negative values for dielectric constant � and perme-
ability � �1�. Several interesting phenomena were predicted
and partly demonstrated for microwaves, e.g., negative re-
fraction �2�, subwavelength focusing and imaging �3�, and an
infinite number of diffraction orders �4�. While the negative
value of � is a natural property of metals and can therefore
be incorporated into the metamaterials by simple metallic
elements such as metallic rods, the negative value of � has to
be gained using a resonance. For microwave frequencies
these resonances can be created using the well known split
ring or swiss roll structures. These structures work as LC
circuits. As negative values of � can only be achieved suffi-
ciently close to the resonance, the effects relying on a nega-
tive � are only observable in a small frequency range. Fur-
thermore a downscaling of the metamaterials for use in the
near infrared and visible range of the electromagnetic spec-
trum is still difficult, as the size of the LC elements has to be
reduced well below a micrometer. Therefore simple LC ele-
ments like closely spaced short rods �5�, or small area metal
plates �6� were introduced recently which circumvent some
of the manufacturing problems.

Here it is suggested that several of the interesting proper-
ties for materials with simultaneously negative � and � can
also be observed in uniaxial anisotropic metamaterials where
� is scalar and positive and only the two principal values of
� have different signs.

The paper is structured in the following way: At first a
short review of the wave propagation in uniaxial materials is
given and the dispersion relation for ordinary and extraordi-
nary waves is derived followed by a discussion for the spe-
cific case of an indefinite dielectric tensor. Afterwards a met-
allo dielectric multilayer is discussed as an example for a

corresponding metamaterial. The propagating modes are in-
vestigated applying an effective medium model and exact
Bloch wave calculations. This multilayer system is also of
practical importance as it was recently suggested for sub-
wavelength imaging �7�.

WAVE PROPAGATION IN ANISOTROPIC MEDIA

The optical properties of anisotropic media can be de-
scribed in form of tensors. As only materials with an aniso-
tropic dielectric constant are considered here, the magnetic
permeability � is scalar and assumed to be �=1. The dielec-
tric tensor in the coordinate system of the principal axes
reads then

�̂ = ��x 0 0

0 �y 0

0 0 �z
� . �1�

The principal dielectric constants �x, �y, �z depend only on
the frequency of the light. Spatial dispersion is not consid-
ered in the model.

To simplify further calculations, the principal dielectric
constants are assumed to be real. Absorption is therewith
neglected. Assuming plane waves of the form ei��t−k�·r�� for the
electric and magnetic fields, the original Maxwell equations

��H� =D�̇ and ��E� =−B�̇ have the following form:

− k� � H� = ��0�̂ · E� �2�

and

k� � E� = �0�H� . �3�

Combining �2� and �3� results in the following wave equation
for the electric field in anisotropic media

1

�0�0�2 �k� � �k� � E� �� = − �̂ · E� . �4�

Using k� �k� �E� =k��k� ·E� �−E� k2 and c2= 1
�0�0

the following ho-
mogeneous system for the components of the electric field,
Ex, Ey, Ez, is derived
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kx�kxEx + kyEy + kzEz� = �k2 −
�2

c2 �x�Ex,

ky�kxEx + kyEy + kzEz� = �k2 −
�2

c2 �y�Ey ,

kz�kxEx + kyEy + kzEz� = �k2 −
�2

c2 �z�Ez. �5�

Nontrivial solutions are obtained by setting the determinant
of the system to 0. For the uniaxial materials discussed here,
the principal axis is taken along the z direction and the prin-
cipal dielectric constants are redefined as �x=�y=�� and
�z=�	. Remembering k2=kx

2+ky
2+kz

2, the resulting equation
can be written


�2

c2 �� − k2�
�4

c4 ���	 −
�2

c2 ���kx
2 + ky

2� −
�2

c2 �	kz
2� = 0.

�6�

This eigenvalue equation has the following two solutions:


�2

c2 �� − k2� = 0 �7�

and


�4

c4 ���	 −
�2

c2 ���kx
2 + ky

2� −
�2

c2 �	kz
2� = 0. �8�

Formula �7� determines the dispersion relation for the ordi-
nary waves in the medium. Their electric field is polarized
perpendicular to z and they are identical with the E-polarized
waves in Ref. �8�. The wavelength �=2� /k and with this the
refractive index is independent of the direction of the wave
vector. Equation �8� is further simplified by setting ky =0 as
the choice of the direction of x and y is completely arbitrary
within the plane perpendicular to the z axis �xy plane�. So �8�
becomes

�2

c2 =
kx

2

�	

+
kz

2

��

or kz
2 = k0

2�� −
��

�	

kx
2, �9�

where k0=� /c represents the wave number in vacuum. This
is the dispersion relation for the extraordinary waves in the
medium. Their magnetic field is polarized perpendicular to z
�H-polarized waves in Ref. �8��. For them the wavelength
and refractive index depend directly on the direction of the
wave vector.

Here we are concerned with materials, whose principal
dielectric constants have different signs. The following two
cases for uniaxial media with indefinite dielectric tensor ex-
ist:

�1� Media with ���0 and �	 �0.
�2� Media with ���0 and �	 �0.
In the first case propagating ordinary waves do not exist,

as ���0 and their wave vector is therefore imaginary �see
�7��. In the second case propagating ordinary waves do exist,
as ���0. Because the refractive index for ordinary waves is
simply ���, these waves propagate as in an isotropic me-
dium.

Of much higher interest are the extraordinary waves. In
both cases the curve describing the relationship between kx
and kz �isofrequency curve� forms a hyperbola �Fig. 1�. As
the hyperbola is unlimited, there exist no maximum kx or kz
and also the resulting wave number k is unlimited. This
means that waves with arbitrary small wavelengths can
propagate through the structures.

Let us first concentrate on the special properties of the
materials with ���0 and �	 �0: The isofrequency hyper-
bola is centered around the x axis and crosses it at kx

= ±��	k0. This determines the smallest wave vector which
can propagate within the structure. When light is incident on
the xy surface of the uniaxial material from an isotropic me-
dium above �Fig. 1�c��, it can only be transmitted when its kx

component is larger than ��	k0. In Fig. 1�a� the incident
wave is represented by the slightly downwards pointing thick
solid arrow and its positive kx component is indicated by the
dashed perpendicular construction line. The intersection of

FIG. 1. Diagrams for extraordinary rays and
wave vectors in uniaxial media with principal di-
electric constants of different sign. �a� Wave vec-
tor diagram �k space� for an uniaxial medium
with ���0,�	 �0. The solid hyperbola repre-
sents the wave vectors of all propagating waves
in the medium. The long solid arrow identifies the
wave vector incident on a xy surface of the me-
dium, while the dashed arrow represents the
specular reflected wave vector. The dash-dot ar-
row is the transmitted wave vector in the uniaxial

medium. The short solid arrow indicated with S�

represents the Poynting vector of the transmitted
wave. �b� Wave vector diagram �k space� for an
uniaxial medium with ���0,�	 �0. �c� Waves in
real space for ���0,�	 �0. �d� Waves in real
space for ���0,�	 �0.
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the construction line with the circle determines the specular
reflected wave in the isotropic medium while its two inter-
sections with the hyperbola indicate the wave vector within
the uniaxial medium for which the kx component �component
parallel to the surface� is conserved. To determine the single
transmitted wave, the direction of the Poynting vector S� of
these two preselected waves has to be considered. To obey
causality it has to lead away from the surface towards the

negative z direction �negative z component of S��. This leaves
only the upward wave vector �dash-dot arrow� as transmitted
wave. As the Poynting vectors of incident wave and trans-
mitted wave have both positive x components, the wave is
refracted in the classical, normal sense. However the oppo-
site z components for incident and transmitted wave vector
�incoming wave vector points downwards, while transmitted
wave vector points upwards� leads to a backward counting of
the phase when the wave travels through the uniaxial me-
dium. This can be used for a compensation of phase similar
to what was considered for perfect lenses �3� or compensat-
ing bilayers �9�.

If the angle of incidence decreases and the kx component
of the incident wave becomes smaller than ��	k0, no inter-
section between the construction line and the hyperbola can
be obtained anymore and all the incident energy is totally
reflected. This unusual angle dependency of the total reflec-
tion was already found for anisotropic media with partly
negative permeability �10�. This can be extended to an om-
nidirectional total reflection of all waves with all incidence
angles, when the refractive index of the upper isotropic me-
dium is smaller than ��	. Then the whole wave vector of the
incident wave is shorter than ��	k0 and no transmitted wave
exists for any angle of incidence.

Let us now consider the media with ���0 and �	 �0.
Here for every kx a propagating wave with a real kz can be
obtained and the minimum absolute value of kz is ���k0 for
kx=0. Following the same procedure as in Fig. 1�a�, the re-
flected and transmitted waves can be determined which
emerge after incidence of a plane wave on a xy surface.
Demanding again a Poynting vector with negative z compo-
nent, the wave vector of the transmitted wave points now
downwards away from the interface. However the x compo-
nent of the Poynting vector is negative, so that negative re-
fraction occurs. A plane slab of this anisotropic material can
therefore focus the light coming from a point source which is
placed in an isotropic medium above the slab. This also in-
cludes the waves which have an evanescent character in the
isotropic medium. They are transformed into propagating
waves at the upper surface of a slab of the uniaxial material,
travel as propagating waves through the slab and form again
evanescent modes at the lower end of the slab. Similar such
as for anisotropic media with partly negative permeability
�4�, the hyperbolic isofrequency curve allows an infinite
number of propagating diffraction orders within the uniaxial
material if a grating is placed on its xy surface.

These examples show, that many interesting new optical
phenomena which were originally discovered for metamate-
rials with a partly negative permeability, are also present in
media with purely positive scalar permeability. The indefinite
dielectric tensor is sufficient to create the hyperbolic wave

vector relationship for the extraordinary waves, which is the
basis for these properties.

AN EXAMPLE FOR ���0 AND �II�0—THE METALLO
DIELECTRIC MULTILAYER

Effective medium approximation

A simple example for an effective anisotropic metamate-
rial with ���0 and �	 �0 is a periodic multilayer stack of
alternating metal and dielectric layers. The surface normal of
the layers is parallel to the z axis and the layers extend infi-
nitely within the xy plane. The idea is to make the layers so
thin, that the multilayer acts as an effective medium. In this
case the following Wiener formulas �or Wiener bounds�
should be applicable to calculate the two principal dielectric
constants, ��

eff and �	
eff, for this metamaterial:

��
eff = f�metal + �1 − f��diel, �10�

1

�	
eff =

f

�metal
+

1 − f

�diel
or �	

eff =
�metal�diel

f�diel + �1 − f��metal
.

�11�

f represents the metal filling factor and is defined as f

=
dmetal

dmetal+ddiel
=

dmetal

R where dmetal and ddiel are the thickness of the
metal layer and the dielectric layer, respectively. R is the
period of the multilayer. In the following a dielectric con-
stant of �diel=2.25 is assumed and the metal is silver �11�.
The imaginary part of the dielectric constant of silver is ne-
glected. Figure 2 shows the effective dielectric constants for
the spectral region from the near infrared to the UV for the
filling factors f =0.5 and f =0.88. The value ��

eff is a smooth
continuous function over the whole spectral range starting at
positive values for short UV wavelengths and falling quickly
to negative values in the visible and beyond. The vacuum
wavelengths, where ��

eff becomes 0, are �0=360 nm �f
=0.5� and �0=328 nm �f =0.88�. In contrary the dispersion
of the effective dielectric constant �	

eff shows a clear reso-
nance at �0res=359 nm �f =0.5� and �0res=643 nm �f =0.88�.
This resonance occurs when f�diel+ �1− f��metal=0. At the
short wavelength side of the resonance �	

eff stays negative
while at the long wavelength side �	

eff is positive. So for
wavelengths above �0res=359 nm �f =0.5� and �0res

=643 nm �f =0.88� the desired case of ���0 and �	 �0 is
achieved. Close to the resonance �	

eff takes extremely large
positive or negative values. How far this simple effective
medium model describes the reality of wave propagation in
the multilayers has to be examined therefore. In the follow-
ing an analytical model is applied which yields the exact
dispersion relation.

Analytical exact calculation

As the structure consists of plane infinitely extended lay-
ers, the boundary conditions for the solutions of the wave
equation are simple. When the thickness of the dielectric
layers ddiel is kept well below �

2 =
�0

2��diel
no TE-polarized

waves �electric field perpendicular to z� can propagate. Then
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indeed only TM polarized waves �magnetic field perpendicu-
lar to z� can propagate through the structure. We choose the
magnetic field to be oriented along y which leaves Ex ,Ez
�0 and Ey =0. The fields in each layer are described as a
sum of forward and backward traveling waves. At the inter-
faces the usual continuity relations for the parallel compo-
nents of magnetic and electric field are applied �12�. Finally
one arrives at a transfer matrix equation which relates the
amplitudes of the forward and backward traveling waves in
the metal layer of period n �ametal

�n� and bmetal
�n� � with the ampli-

tudes within the metal layer of period �n−1� �ametal
�n−1� and

bmetal
�n−1��. The transfer matrix equation for the magnetic field

amplitudes in the metal layers of adjacent periods reads then

�ametal
�n−1�

bmetal
�n−1� � = �A B

C D
��ametal

�n�

bmetal
�n� � �12�

with

A = eikzmdmetal
cos kzdddiel +
1

2
i� �dielkzm

�metalkzd

+
�metalkzd

�dielkzm
�sin kzdddiel� ,

B = − e−ikzmdmetal
1

2
i� �dielkzm

�metalkzd
−

�metalkzd

�dielkzm
�sin kzdddiel� ,

C = eikzmdmetal
1

2
i� �dielkzm

�metalkzd
−

�metalkzd

�dielkzm
�sin kzdddiel� ,

D = e−ikzmdmetal
cos kzdddiel −
1

2
i� �dielkzm

�metalkzd

+
�metalkzd

�dielkzm
�sin kzdddiel� , �13�

where kzm=��2

c2 �metal−kx
2 and kzd=��2

c2 �diel−kx
2.

As the multilayer represents a periodic structure along z,
its eigenmodes are also Bloch waves and the fields must
obey the general phase relation between adjacent periods for
Bloch waves. This leads to

�ametal
�n−1�

bmetal
�n−1� � = eiKz

BR�ametal
�n�

bmetal
�n� � . �14�

Combining �12� and �14� gives

0 = �A − eiKz
BR B

C D − eiKz
BR
��ametal

�n�

bmetal
�n� �

and setting the determinant to 0 yields the eigenvalue equa-

tion for eikz
BR

eiKz
BR =

A + D

2
±��A + D

2
�2

− 1. �15�

As we are searching for propagating modes, the Bloch wave

number Kz
B has to be real and the absolute value of eiKz

BR is
therefore 1. Close inspection of A and D reveals, that their
sum is real �D=A* �. In order to obtain a complex number
with absolute value 1 on the right hand side of �15� too, it is
necessary that 
A+D
	2. Then the square root in �15� is
imaginary and the Bloch wave number can be obtained from

Kz
B��,kx� =

1

R
arccos�A + D

2
� ±

2�

R
s with s = 0,1,2 . . . .

�16�

Here the term 2�
R s was added to show all possible solutions.

This term represents the one dimensional �1D� reciprocal lat-
tice vector and determines the width of the 1D Brillouin
zone. From �16� all possible propagating modes with a real
Kz

B and their corresponding kx can be obtained.
Figure 3 shows the resulting dispersion relations. At first a

multilayer structure with thin dielectric layers �ddiel

=10 nm� and thick silver layers �dAg=200 nm� is investi-
gated �Fig. 3�a��. The dispersion relation of the multilayer
�solid curve� is practically identical with the dispersion of
coupled surface plasmons in a single dielectric cavity be-
tween bulk silver mirrors. The cavity plasmons form two
branches in the dispersion diagram. The lower branch be-
longs to the cavity plasmons whose magnetic field is sym-
metric with respect to the center of the cavity while the upper

FIG. 2. Effective dielectric constants for multilayer stacks with
filling factors of f =0.5 �solid� and f =0.88 �dash-dot�. �a� Dielectric
constant perpendicular to z����. �b� Dielectric constant parallel to
z��	�. The small arrows indicate the values of the constants at the
specific wavelengths of 563 nm and 826 nm.
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flat branch represents the cavity plasmons with asymmetric
magnetic field distribution.

The coupling between the cavity plasmons belonging to
different dielectric layers is extremely weak due to the thick
separating silver layers. So the dielectric layers in the
multilayer stack act as almost independent dielectric cavities
and the dispersion is hardly influenced at all by the multiple
layer stack. For comparison the dispersion of the simple sur-
face plasmon at a single silver/dielectric interface is also
shown �triangles in Fig. 3�a��. These plasmons can only exist
below the limiting frequency �sp �dash-dot line� and its dis-
persion curve lies close to the light line �dashed� for longer
wavelengths. It bends only at higher frequencies. The sym-
metric cavity plasmon modes have considerable larger wave
vectors, which is a result of the strong coupling between the
individual plasmonic oscillations at the opposite silver/
dielectric interfaces and is facilitated by the very thin dielec-
tric layer/cavity.

If the thickness of the silver layers is reduced to dAG
=30 nm �ddiel=10 nm remains constant�, the coupling be-
tween the cavity plasmons increases and plasmon bands
form. It is now possible to fulfill �16� at each frequency for a
range of kx This is indicated by the grey shaded area in Fig.
3�b�. The range of the kx values for which �16� is fulfilled
determines the width 
kx of the plasmon bands in kx space.
The band limits are formed by the modes whose Bloch wave

vectors are Kz
B=0, ±2� /R , . . ., 2�s /R and Kz

B= ±� /R,
±3� /R , . . ., �2s+1�� /R �solid curves in Fig. 3�b��. The
bandwidth 
kx still decreases for frequencies close to �sp. As
kx increases strongly in this spectral region, the fields decay
more rapidly perpendicular to the interfaces within the silver.
This reduces the coupling across the silver layers and the
bandwidth shrinks to almost 0 as in Fig. 3�a� before.

Is the thickness of the silver layers further reduced to
dAg=10 nm �ddiel=10 nm� the coupling of the cavity plas-
mons across the now very thin silver layers becomes strong
and the plasmon bandwidth increases considerably �Fig.
3�c��. This is especially true for frequencies closer to �sp.
Now the silver layers are thin enough so that even for higher
kx the bandwidth is large. As an example the bandwidth at a
vacuum wavelength of 563 nm is determined �Fig. 3�c��. The
band limits lie at kx

bottom=0.026 nm−1 and kx
top=0.095 nm−1

and the bandwidth is 
kx=kx
top−kx

bottom=0.069 nm−1. With
this the kx-component of the wave vector at the upper band
edge is about 5.6 times larger than the wave number in the
dielectric at the same frequency �kdiel=0.017 nm−1�.

This evolution of plasmon bands suggests, that the TM
polarized waves traveling through a metallodielectric
multilayer can be identified as coupled surface plasmons
�13�. The transmission of light along the z direction can be
envisaged as plasmon tunneling or hopping. A point source
closely located to the surface of the multilayer excites a plas-

FIG. 3. Development of plasmon bands. The insets show the geometry of the investigated structure. �a� Dispersion relation for a
metallodielectric multilayer �solid line� with a thickness of the silver layers dAg=200 nm and a thickness of the dielectric layers of ddiel

=10 nm. The dispersion of coupled plasmons for a single dielectric cavity between two infinitely extended silver mirrors fits very well
�circles�. For comparison the dispersion relation of surface plasmons at a single dielectric-silver interface �triangles� and the light line in the
dielectric �straight dashed line� are shown. The horizontal dash-dot line marks the limiting frequency of surface plasmons at the dielectric-
silver interface. �b� Dispersion relation for a metallodielectric multilayer with dAg=30 nm and ddiel=10 nm. The grey shaded areas are filled
with plasmonic modes and represent plasmonic bands. �c� Dispersion relation for a metallodielectric multilayer with dAg=10 nm and ddiel

=10 nm. Increased coupling of the surface plasmons leads to a broadening of the plasmonic bands.
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monic oscillation at the uppermost metal/dielectric interface.
Due to the small thickness of the metal and dielectric layers
this excitation induces a similar surface plasmon at the next
subjacent interface. The plasmon tunnels from one interface
to the next and finally penetrates the whole multilayer mate-
rial. These coupled surface plasmons are called “multilayer
plasmons” in the following. To confirm this interpretation,
the magnetic and electric field components of the presented
multilayer plasmons are shown in Fig. 4 for three different
Bloch wave vectors. These figures represent snapshots of the
fields at a particular time. For the Bloch wave with Kz

B=0
the field profiles are the same in every period of the
multilayer. The magnetic field �left vertical scale� only mini-
mally changes in the dielectric layer, and only slightly more
in the silver layer. The overall level remains almost un-
changed. The Ex component has a completely different pro-
file and varies between positive and negative values in each
period. The field profiles for Kz

B=�/�2R� look less symmet-
ric and the determining influence of the Bloch wave vector is
clearly visible. Finally the fields for Kz

B=� /R show the ex-
pected phase shift of � between the fields of adjacent peri-
ods. The magnetic field drops to 0 at the center of the silver
layers while Ex reaches only a shallow local minimum at a
very high level. All field profiles show distinct field concen-
trations at the interfaces and an exponential decay of the
fields away from the interface. This confirms the interpreta-
tion of the modes as multilayer plasmons. Furthermore the
magnetic field within the dielectric layers keeps its symmet-
ric character, which the modes inherited from their origin as
symmetric cavity plasmons.

How does this scheme of multilayer plasmons fit together
with the effective medium approximation?

The answer is found by considering wave vector dia-
grams. In Fig. 5 the wave vector diagrams at two different
frequencies are shown. For each frequency the hyperbolic
wave vector relationship of the effective medium model �tri-
angles� is compared with the wave vectors of 3 silver/
dielectric multilayers. The filling factor of all 3 multilayers is
0.5 so that a comparison with the effective medium is pos-
sible. As kz component of the coupled multilayer plasmons
the Bloch wave number Kz

B is taken. To allow a better over-
view in Figs. 5�a� and 5�c� the extended zone scheme of the
multilayer Bloch waves is chosen. It includes several Bril-
louin zones. The isofrequency curves of the multilayer Bloch
waves are the wavy curves. Their periodicity depends on the
width of the Brillouin zones which is 2�

R . As the real space
period R varies from R=40 nm over R=20 nm to R
=10 nm, the width of the Brillouin zones increases from

2�
40 nm =0.157 nm−1 over 2�

20 nm =0.31 nm−1 to 2�
10 nm

=0.63 nm−1 for the different multilayers. The first Brillouin
zone for every multilayer is centered at Kz

B=0 and ranges
from −� /R to � /R. As kx appears only squared in all equa-
tions, the isofrequency surfaces have the same form for posi-
tive and negative kx, so that the wave vector diagram is mir-
ror symmetric about the kz axis.

For small wave vectors kz the isofrequency contours de-
rived from multilayer-Bloch waves and effective medium ap-
proximation agree very well �Figs. 5�b� and 5�d��. This
means that the extraordinary waves of the effective medium

calculation can be identified as multilayer plasmons obtained
from the exact calculation. In this way the global picture of
extraordinary waves in an effective medium is unified with
the local description of multilayer plasmons. For larger kz
however the exact multilayer solutions drop off. This hap-
pens at first for the solutions of the multilayer with R
=40 nm. The corresponding plasmon band has the smallest

FIG. 4. Field distributions within the multilayer for different
wave vector components kz. �a� Magnetic field Hy �solid curve� and
electric field component Ex �dashed� for kz=0. �b� Hy �solid curve�
and Ex �dashed� for kz= 1

2
�

R . �c� Hy �solid curve� and Ex �dashed� for
kz= �

R .

JÖRG SCHILLING PHYSICAL REVIEW E 74, 046618 �2006�

046618-6



bandwidth and its upper band edge lies already at kx
=0.0508 nm−1 ��0=563 nm� or kx=0.031 nm1 ��0

=826 nm�. The wave vectors for the multilayer with R
=20 nm agree over a larger range of kx quite well with the
hyperbolic isofrequency curve of the effective medium. As
expected the best agreement over the largest kx range is
achieved with the thinnest layers �R=10 nm�. The exact
multilayer solution coincides exceptionally well with the hy-
perbolic effective medium solutions up to kx�1.2 nm−1

when the multilayer solutions finally drop off. As a rule of
thump it can be suggested that the isofrequency curve for the
lower half of the plasmon band can be approximated rather
well by the effective medium relation.

While the approximate effective medium solutions predict
an increase of kx and kz ad infinitum, the bandwidth of the
exact solutions is limited to the maximum kx at the upper
band limit. Since the layer thicknesses decrease, the upper
band limit can be shifted to larger kx values. However it will
always stay finite. This is the primary qualitative difference
between the effective medium approximation and the exact
multilayer Bloch waves. While the effective medium ap-
proximation would allow the propagation of waves with in-
finitely large kx, the exact multilayer solution allows only
propagating modes up to a certain maximum kx which de-
pends on the layer thickness.

During the discussion of the effective medium approxima-
tion for �	 the appearance of resonances was pointed out. For

a filling factor of f =0.5 this resonance lies in the UV which
is far off from the specific wavelengths �0=563 nm and �0
=826 nm discussed up to now. However if the filling factor
is f =0.88 the resonance lies at �0res=643 nm so that �0
=563 nm lies on the short wavelength side and the resulting
effective dielectric constant �	

eff at �0=563 nm is negative.
This means, that �	

eff and ��
eff are both negative for this wave-

length and no propagating modes exist after the effective
medium approximation. On the other hand �0=826 nm lies
still on the long wavelength side and its �	

eff is still positive.
Its value increased to �	

eff=41.3 partly due to the proximity of
the resonance.

This situation is compared with the exact multilayer solu-
tions in the wave vector diagrams of Fig. 6. Two multilayer
structures with a common filling factor of f =0.88 and silver
thicknesses of dAg=10 nm and dAg=20 nm are shown. These
particular silver thicknesses were chosen to achieve a similar
coupling of the plasmons across the silver layers and to al-
low a comparison with Fig. 5. Contrary to the effective me-
dium approximation, propagating multilayer plasmons exist
at �0=563 nm �Fig. 6�a��. Compared to Fig. 5�d�, the wave
vector curves are shifted to considerable higher kx values
which seems to be the result of the higher metal content of
the structure �f =0.88!�. As the effective medium approxima-
tion does not allow any propagating modes, no hyperbolic
curve appears for �0=563 nm. For �0=826 nm the hyper-
bolic isofrequency curve of the effective medium exists and
is compared with the exact multilayer solutions in Fig. 6�b�.

FIG. 5. Wave vector diagrams for silver-dielectric multilayers with a filling factor of f =0.5. Solid curves represent wave vectors in
structures with dAg=10 nm/ddiel=10 nm. Dashed and dash-dot curves correspond to wave vectors in multilayers with dAg=5 nm/ddiel

=5 nm and dAg=20 nm/ddiel=20 nm, respectively. �a� Overview of wave vector dispersion at �=826 nm. Triangles mark the wave vectors
calculated using the effective medium approximation. �b� Detail of the wave vector diagram at �=826 nm revealing the good agreement of
effective medium approximation and exact calculation for small kz. �c� Overview of wave vector dispersion at �=563 nm. �d� Detail of � �
for small kz.
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For small kz the hyperbola fits the exact solutions still re-
markably well. However the multilayer solutions drop off
faster than in Fig. 4�b� and the kx values are overall larger
than in Fig. 5�b�.

As the results for effective medium approximation and
exact Bloch wave calculation disagree qualitatively for �0
=563 nm, one has to conclude that the effective medium
approximation fails at this point. The resonance for �	

eff,
which is predicted by the effective medium model, is an
artifact of the simple model.

CONCLUSION

In summary it was demonstrated that many interesting
optical phenomena, which are normally ascribed to metama-
terials with at least partly negative permeability, should also
appear in uniaxial metamaterials with an indefinite dielectric
tensor and scalar positive permeability. Two principal dielec-
tric constants with different sign are sufficient to create a
hyperbolic wave vector relation for the extraordinary waves.
This is the basis for many of the discussed phenomena. As an
example for such a uniaxial metamaterial a metallodielectric
multilayer stack was presented. The exact calculation of the
dispersion relation reveals, that extraordinary waves travel as
multilayer plasmons through the structure. For small wave
vectors �long wavelengths� a very good agreement of effec-
tive medium theory �Wiener formulas� and exact calculation
is obtained, if the thickness of the layers is about 10 nm. For
larger wave vectors the effective medium theory looses its
validity as the maximum wave vector component parallel to
the layer surfaces is limited. The apparent resonances in the
Wiener formulas �effective medium approximation� predict-
ing strong negative and positive dielectric constants do not
coincide with the exact calculations and describe the reality
wrongly.

As the discussed uniaxial media do not require complex
inductive structures to create a negative �, they are easier to
fabricate for short wavelengths such as the visible and infra-
red spectral range. Since no special LC resonance is re-
quired, the spectral range over which these materials keep
their properties are much larger than for metamaterials rely-
ing on a negative �. These reasons should ensure strong
interest and further thorough investigations of this class of
metamaterials.
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